LINEAR EQUATION IN TWO VARIABLES

CONTENTS

- Linear Equations in one Variable
- General form of Linear Equations in Two variables
- Solution of Linear Equation
- Graph of Linear Equation in Two Variables.
- Equations of Lines Parallel to

The X-axis and Y-axis

LINEAR EQUATIONS IN ONE VARIABLE

A statement of equality of two algebraic expressions, which involve one or more unknown quantities is known as an equation.

A linear equation is an equation which involves linear polynomials.

A value of the variable which makes the two sides of the equation equal is called the solution of the equation.

Same quantity can be added/subtracted to/from both the sides of an equation without changing the equality.

Both the sides of an equation can be multiplied/divided by the same non-zero number without changing the equality.

SENERAL FORM OF LINEAR EQUATION IN TWO VARIABLES

Linear Equation in Two variables

ax + by + c = 0, $a \neq 0$, $b \neq 0$ or any one from a & b can zero.

♦ EXAMPLES ◆

Ex.1 Express the following linear equations in general form and identify coefficients of x, y and constant term.

Sol.

S.No.	Equation	General form	Coeff. of x, y, constant
(1)	3x - 2y = 5	3x - 2y - 5 = 0	3, -2, -5
(2)	$\frac{3}{7}\mathbf{x} - 2 + \mathbf{y} = 0$	$\frac{3}{7}x + y - 2 = 0$	$\frac{3}{7}$, 1, -2
(3)	5y = 2x + 7	2x - 5y + 7 = 0	2, -5, 7
(4)	18y - 72x = 8	72x - 18y + 8 = 0	72, -18, 8
(5)	$3.\overline{7}x - y - \frac{1}{7} = 0$	$3.\overline{7}x - y - \frac{1}{7} = 0$	$3.\overline{7}, -1, -\frac{1}{7}$
(6)	y = 5	$0\mathbf{x} + \mathbf{y} - 5 = 0$	0, 1, -5
(7)	$\frac{x}{7} = 5$	$\frac{x}{7} + 0.y - 5 = 0$	$\frac{1}{7}, 0, -5$
(8)	2x + 3 = 0	2x + 0y + 3 = 0	2, 0, 3

- **Ex.2** Make linear equation by the following statements :
- (1) The cost of 2kg of apples and 1 kg of grapes on a day was found to be j 160. After a month, the cost of 4 kg of apples and 2 kg of grapes is j 300. Represent the situation algebraically.
- **Sol.** Let cost of per kg apples & grapes are x & y respectively then by Ist condition :

$$2x + y = 160$$
(i)

& by
$$II^{nd}$$
 condition : $4x + 2y = 300$ (ii)

1

- (2) The coach of a cricket team buys 3 bats and 6 balls for j- 3900. Later, she buys another bat and 3 more balls of the same kind for j-1300. Represent this situation algebraically.
- Sol. Let cost of a bat and a ball are j x & j y respectively. According to questions

3x + 6y = 3900(i) & x + 3y = 1300(ii)

- (3) 10 students of class IX took part in a Mathematics quiz. If the number of girls is 4 more than the number of boys.
- **Sol.** Let no. of boys and girls are x & y then according to question

$$x + y = 10$$
(i)
& $y = x + 4$ (ii)

- (4) Half the perimeter of a rectangular garden, whose length is 4 m more than its width, is 36 m.
- **Sol.** Let length & breadth are x m and y m.

$$\therefore \text{ according to question } \frac{1}{2} \text{ perimeter} = 36$$
$$\frac{1}{2} [2(\ell + b)] = 36$$
$$\Rightarrow x + y = 36 \qquad \dots (i)$$

also length = 4 + breadth

$$x = 4 + y$$
(ii)

- (5) The difference between two numbers is 26 and one number is three times the other.
- **Sol.** Let the numbers are x and y & x > y

 $\therefore x - y = 26$ (i) and x = 3y(ii)

- (6) The larger of two supplementary angles exceeds the smaller by 18 degrees.
- Sol. Let the two supplementary angles are x and y & x > y

 Then $x + y = 180^{\circ}$ (i)

 and $x = y + 18^{\circ}$ (ii)

(7) A fraction becomes $\frac{9}{11}$, if 2 is added to both the numerator and the denominator. If, 3 is

added to both the numerator and the denominator it becomes $\frac{5}{6}$.

Sol. Let fraction is
$$\frac{x}{y}$$

Now according to question $\frac{x+2}{y+2} = \frac{9}{11}$

$$\Rightarrow 11x + 22 = 9y + 18$$

$$\Rightarrow 11x - 9y = -4 \qquad \dots (i)$$

and $\frac{x+3}{2} = \frac{5}{2} \Rightarrow 6x + 18 = 5y + 15$

$$\frac{y+3}{y+3} \xrightarrow{-\frac{1}{6}} \xrightarrow{-\frac{1}{6}} \xrightarrow{0} 0x + 18 \xrightarrow{-5} y + 15$$

- \Rightarrow 6x 5y = -3(ii)
- (8) Five years hence, the age of Sachin will be three times that of his son. Five years ago, Sachin's age was seven times that of his son.
- **Sol.** Let present ages of Sachin & his son are x years and y years.

Five years hence,

age of Sachin = (x + 5) years & his son's age = (y + 5) years

according to question (x + 5) = 3(y + 5)

$$\Rightarrow$$
 x + 5 = 3y + 15

 $\Rightarrow x - 3y = 10$ (i)

and 5 years ago age of both were (x - 5) years and (y - 5) years respectively

according to question (x - 5) = 7(y - 5)

$$\Rightarrow x - 5 = 7y - 35$$

 \Rightarrow x - 7y = -30(ii)

SOLUTION OF LINEAR EQUATION

Method : Put the value of x (or y) = 0, ± 1 , $\pm 2, \pm 3, \ldots$, we get values of y (or x). By this we can find many solutions of given equation.

♦ EXAMPLES ♦

Ex.3 Find five solutions of

(i) 2x + 3y = 6 (ii) 3x - 2y = 12

(iii)
$$7x + y = 15$$

Sol. (i)
$$2x = 6 - 3y$$

$$\Rightarrow x = \frac{6-3y}{2}$$

Now put $y = 0$, $x = \frac{6-0}{2} = 3$
for $y = 1$, $x = \frac{6-3(1)}{2} = \frac{3}{2}$
for $y = 2$, $x = \frac{6-3(2)}{2} = 0$
for $y = 3$, $x = \frac{6-3(3)}{2} = -\frac{3}{2}$
for $y = 4$, $x = \frac{6-3(4)}{2} = -3$
 $\therefore \qquad \boxed{\frac{x \ 3 \ 3/2 \ 0 \ -3/2 \ -3}{y \ 0 \ 1 \ 2 \ 3 \ 4}}$

(ii)
$$3x - 12 = 2y \Rightarrow y = \frac{3x - 12}{2}$$

Put value of x = 0, 1, 2, 3, -1

we get
$$y = -6, -\frac{9}{2}, -3, -\frac{3}{2}, -8$$

х	0	1	2	3	-1
у	- 6	-9/2	-3	-3/2	-8

(iii) y = 15 - 7x

Put x = 0, 1, 2, 3, 4 we get y = 15, 8, 1, -6, -13

	х	0	1	2	3	4
•••	у	15	8	1	- 6	-13

Ex.4 Find two solutions of

(i)
$$3x - 7y = 21$$
 (ii) $8x - 5y = 16$

Sol. (i)
$$3x - 7y = 21$$

Put
$$x = 0$$
, $3(0) - 7y = 21$

$$y = \frac{21}{-7} = -3$$

$$\therefore x = 0, y = -3$$

and put $y = 0 \Rightarrow 3x - 7(0) = 21$

$$3x = 21$$

$$x = \frac{21}{3} = 7$$

Linear Equation in Two variables

$$\therefore x = 7, y = 0$$
$$\therefore \boxed{x \quad 0 \quad 7}$$
$$y \quad -3 \quad 0$$
$$8x - 5y = 16$$

(ii)
$$8x - 5y = 16$$

Put $x = 0 \Rightarrow 8(0) - 5y = 16$
 $\Rightarrow -5y = 16 \Rightarrow y = \frac{16}{-5} = -3.2$
 $\therefore x = 0, y = -3.2$
and put $y = 0 \Rightarrow 8x - 5(0) = 16$
 $\Rightarrow 8x = 16 \Rightarrow x = \frac{16}{8} = 2$
 $\therefore x = 2; y = 0$
 $\therefore \frac{x = 0}{y = -3.2} = 0$

Ex.5 Find five solutions of

- (i) 3x = 5
- (ii) 7y = 10
- Sol. (i) The equation is only in one variable. So we have to convert into 2 variable 3x + 0.y = 5

put y = 0, 1, 2, 3, 4 $x = \frac{5}{3}, \frac{5}{3}, \frac{5}{3}, \frac{5}{3}, \frac{5}{3}, \frac{5}{3}$

х	5/3	5/3	5/3	5/3	5/3
у	0	1	2	3	4

(ii)
$$7y = 10$$

$$\Rightarrow 0.x + 7y = 10$$

put x = 0, 1, 2, 3, 4,

we get
$$y = \frac{10}{7}, \frac{10}{7}, \frac{10}{7}, \frac{10}{7}, \frac{10}{7}$$

X		0	1	2	3	4
У	,	10/7	10/7	10/7	10/7	10/7

Note :

Ordered pair : If value of x & y are represent in form (x, y) then this form is called ordered pair form : Eg. x = 5, y = $\frac{7}{3}$ then ordered pair form = $\left(5, \frac{7}{3}\right)$. First part is

called abscissa (x part) and second part is ordinate (y part).

Ex.6 Check the following value of x & y are solution of equation 9x - 8y = 72 or not

(i) (0, 9) (ii) (0, -9) (iii) (-8, 0)
(iv) (+8, 0) (v) (1, 1) (vi)
$$\left(\frac{1}{3}, \frac{1}{2}\right)$$

Sol. Given equation 9x - 8y = 72

(i) LHS at point x = 0, y = 9
= 9(0) - 8(9) = -72
$$\neq$$
 RHS \therefore No
(ii) LHS at x = 0, y = -9
= 9(0) - 8(-9)
= +72 = RHS \therefore Yes
(iii) LHS = 9(-8) - 8(0) (at x = -8, y = 0)
= -72 \neq RHS \therefore No
(iv) LHS = 9(-8) - 8(0) (at x = 8, y = 0)
= 72 = RHS \therefore Yes
(v) LHS = 9(1) - 8(1) (at x = 1, y = 1)
= 9 - 8
= 1 \neq RHS \therefore No
(vi) LHS = 9 $\left(\frac{1}{3}\right) - 8\left(\frac{1}{2}\right)$ (at x = $\frac{1}{3}$, y = $\frac{1}{2}$)
= 3 - 4
= -1 \neq RHS \therefore No

- **Ex.7** Find the value of k in equation 2x + ky = 6 if (-2, 2) is a solution.
- **Sol.** \therefore (-2, 2) is a solution of 2x + ky = 5

:.
$$2(-2) + k(2) = 6$$

- $4 + 2k = 6 \Rightarrow 2k = 6 + 4$
 $k = \frac{10}{2} = 5$ Ans.

Ex.8 Find value of p if (4, -4) is a solution of x - py = 8.

Sol. x - py = 8

$$4 - p(-4) = 8$$

 $4p = 8 - 4$
 $4p = 4$

Linear Equation in Two variables

p = 1 Ans.

Ex.9 Find the value of a if (a, -3a) is a solution of 14x + 3y = 35.

Sol. Put
$$x = a$$
 and $y = -3a$ in given equation

$$14(a) + 3(-3a) = 35$$

 $14a - 9a = 35$
 $5a = 35$
 $a = 7$ Ans.

GRAPH OF LINEAR EQUATION ax + by + c = 0IN TWO VARIABLES, WHERE $a \neq 0, b \neq 0$

(i) Step I:

Obtain the linear equation, let the equation be ax + by + c = 0.

(ii) Step II :

Express y in terms of x to obtain

$$\mathbf{y} = -\left(\frac{\mathbf{a}\mathbf{x} + \mathbf{c}}{\mathbf{b}}\right)$$

(iii) Step III:

Give any two values to x and calculate the corresponding values of y from the expression in step II to obtain two solutions, say (α_1, β_1) and (α_2, β_2) . If possible take values of x as integers in such a manner that the corresponding values of y are also integers.

(iv) Step IV :

Plot points (α_1, β_1) and (α_2, β_2) on a graph paper.

(v) **Step V**:

Join the points marked in step IV to obtain a line. The line obtained is the graph of the equation ax + by + c = 0.

EXAMPLES

- **Ex.10** Draw the graph of the equation y x = 2.
- Sol. We have,

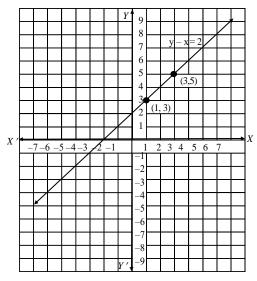
$$y - x = 2$$
$$\Rightarrow y = x + 2$$

When
$$x = 1$$
, we have : $y = 1 + 2 = 3$
When $x = 3$, we have : $y = 3 + 2 = 5$

Thus, we have the following table exhibiting the abscissa and ordinates of points on the line represented by the given equation.

Х	1	3	
у	3	5	

Plotting the points (1, 3) and (3, 5) on the graph paper and drawing a line joining them, we obtain the graph of the line represented by the given equation as shown in Fig.



Ex.11 Draw a graph of the line x - 2y = 3. From the graph, find the coordinates of the point when (i) x = -5

(ii) y = 0.

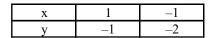
Sol. We have x - 2y = 3

$$\Rightarrow$$
 y = $\frac{x-3}{2}$

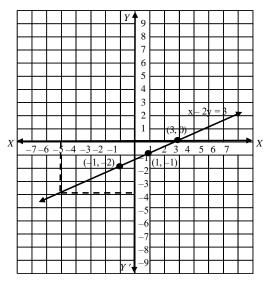
When x = 1, we have : $y = \frac{1-3}{2} = -1$

When x = -1, we have : y = $\frac{-1-3}{2} = -2$

Thus, we have the following table :



Plotting points (1, -1) & (-1, -2) on graph paper & joining them, we get straight line as shown in fig. This line is required graph of equation x - 2y = 3.



To find the coordinates of the point when x = -5, we draw a line parallel to y-axis and passing through (-5, 0). This line meets the graph of x - 2y = 3 at a point from which we draw a line parallel to x-axis which crosses y-axis at y = -4. So, the coordinates of the required point are (-5, -4).

Since y = 0 on x-axis. So, the required point is the point where the line meets x-axis. From the graph the coordinates of such point are (3, 0).

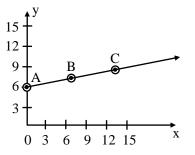
Hence, required points are (-5, -4) and (3, 0).

Ex.12 Draw the graph of

(i) x - 7y = -42(ii) x - 3y = 6(iii) x - y + 1 = 0(iv) 3x + 2y = 12

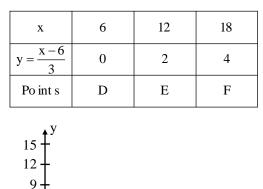
Sol. (i)
$$x - 7y = -42$$

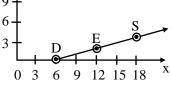
x	0	7	14
$y = \frac{x + 42}{7}$	6	7	8
Po int s	А	В	С



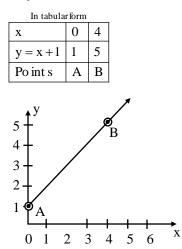
Linear Equation in Two variables

(ii) x - 3y = 6





(iii) x - y + 1 = 0



(iv) 3x + 2y = 12

In tabular fo	orm				
Х	0	2			
$y = \frac{12 - 3x}{2}$	6	3			
Po int s	С	D			
6 6 C 5 - 4 - 3 - 2 - 1 - A 0 1	e I + 2	$\frac{1}{3}$	4	5	 6

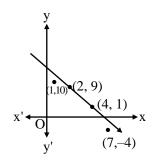
Linear Equation in Two variables

≁ X

Note :

- (i) The graph of any linear equation is a line and every solution of equations lies on the graph of that equation.
- (ii) If a point (a, b) is not on the line then this point is not a solution of given equation.

Eg.



 \therefore (2, 9) and (4, 1) are on the line

 \therefore these two points are solution of given equation

But (1, 10) and (7, -4) are not on the line so these two are not solutions.

Ex.13 If
$$\left(\frac{9}{2}, 6\right)$$
 is lies on graph of $4x + ky = 12$
then find value of k.

Sol.
$$\therefore$$
 $x = \frac{9}{2}$ and $y = 6$ are on the line

∴ put these value in given equation

$$4\left(\frac{9}{2}\right) + k(6) = 12$$

$$18 + 6k = 12$$

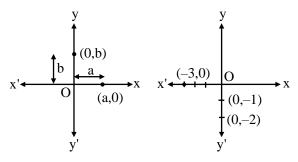
$$6k = 12 - 18$$

$$6k = -6$$

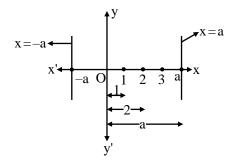
$$k = -1$$
 Ans.

Note :

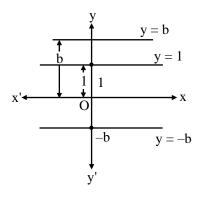
- Equation of x-axis is y = 0 and any point in ordered pair form which is on the x axis is (±a, 0).
- (2) Equation of y axis is x = 0 and any point on y axis is (0, ±b)



- (3) Graph of line $x = \pm a$ is parallel to y axis
- (4) Graph of line $y = \pm b$ is parallel to x axis



Graph of x = -a and x = +a

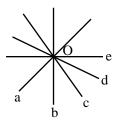


Graph of y = 1, y = b, y = -b

♦ Concurrent lines :

Three or more lines are called concurrent if all lines passes through a common point. These all lines a, b, c, d, e are passes through O.

: These are concurrent lines



Linear Equation in Two variables

Note :

From a point there are infinite lines can pass, so we can find (or make) infinite equations of lines which passes through a given point.

Ex.14 Find five equations of lines which passes through (3, -5).

Sol.
$$x + y = -2, x - y = 8$$

2x + y = 1, 2x - y = 11,

2x + 3y + 9 = 0

EQUATIONS OF LINES PARALLEL TO THE X-AXIS AND Y-AXIS

We can represent graph of these equations in two types of geometrically

- (A) in one variable or on number line
- (B) in two variable or on the Cartesian plane

In one variable, the solution is represent by a point. While in two variable, the solution is represent by a line parallel to x or y axis.

♦ EXAMPLES ♦

- **Ex.15** Give the geometric representation of x = 5 as an equation in
 - (i) one variable
 - (ii) two variable
 - (iii) also find the common solution of x = 5 & x = 0
- **Sol.** (i) x = 5

it is in only one variable so representation on number line

$$x = 5$$

 $x' = -2 - 1 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5$

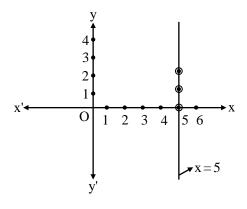
(ii) In two variables (or on Cartesian plane)

first we have to represent equation in two variables x + 0.y = 5(i)

now we have to find two or three solutions of equations (i)

х	5	5	5
у	0	1	2

Then mark these points on graph with proper scale & join them



Scale : on both axis 10 lines or 1 big box = 1 cm

- (iii) $\therefore x = 5$ is line parallel to y axis and x = 0 is y axis.
 - : both are parallel
 - \therefore no common solution
- **Ex.16** Give geometric representation of 5x + 7 = 0 as an equation

(i) in one variable (or on a number line)

(ii) in two variable (or on Cartesian plane)

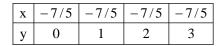
Sol. (i)
$$5x + 7 = 0$$

$$\Rightarrow 5x = -7$$
$$\Rightarrow x = -\frac{7}{5}$$
$$= -1.4$$

$$x = -\frac{7}{5} = -1.4$$

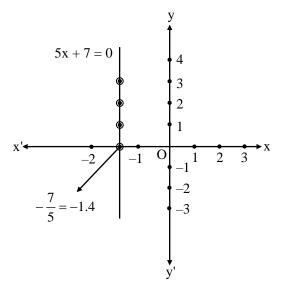
$$x' \leftarrow -3 - 2 - 1 \ 0 \ 1 \ 2 \ 3 \ 4$$

(ii) 5x + 0.y = -7



Scale : on both axis 10 lines or 1 box

= 1 cm



Note :

If constant term 'c' is zero in equation ax + by + c = 0 then line will pass through origin (always)

